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CALCULATIONS OF ELECTRICAL TRANSPORT PROPERTIES 

OF LIQUID METALS AT HIGH PRESSURES 

R. EVANS and ASH OK JAIN* 

H . H. Wills Physics Laboratory , University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 iTL, England 

It is shown how the usual nearly-free-electron model for the 
electrical resistivity of simple liquid metals can be extended to 
the case of liquid transition metals such as iron. A simple pre
scription is given for calculating the resistivity at different densi
ties and temperatures. As an application and example of the 
method, calculations on liquid iron at different densities have 

1. Introduction 

Over the last few years there has been considerable 
progress in understanding the electrical transport prop
erties of liquid metals . A simple model for calculating 
the electrical resistivity and thermoelectric power was 
proposed by ZIMAN (1961). In this model the current 
in the liquid metal is carried by the "valence" or con
duction electrons which are scattered by the disordered 
array of the ions or atoms. This scattering gives rise to 
the resistivity which can be calculated using a Boltz
mann equation approach . Many calculations of the 
resistivity of "simple" liquid metals at normal pressures 
and temperatures have been carried out ; see, for exam
ple, ASHCROFT and LEKNER (1966), FABER (1969) and 
EVANS (1970, 1971). The results of these calculations 
indicate that this simple nearly-free-electron (NFE) 
theory is capable of giving a good description of the 
magnitude of the resistivity, its temperature dependence 
and its behaviour on alloying. DICKEY et al. (1967) 
have calculated the resistivity of the liquid alkali metals 
at high pressures. 

In the "simple" metals, i.e. those which are not noble 
or transition metals, the scattering properties of a single 
ion can be described using the pseudo or model poten
tial technique. The basic idea behind this method is 
that of replacing the actual strong potential of the ion 
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been carried out and the resistivity of molten iron in the Earth's 
outer core is estimated . The effects of alloying iron with other 
elements are also considered. The calculated conductivity of the 
outer core is well within tbe limit required for the dynamo model 
of the geomagnetic field and agrees well with some recent shock 
wave data. 

by a weak potential in such a way that the ion retains 
the original scattering properties. This weak potential 
(the pseudo-potential) can then be used in the Born 
approximation in perturbative calculations of electron
ic properties HARRISON (1966). 

In this paper, we indicate how the NFE model can 
be applied to non-simple metals and in particular to the 
transition metal iron where the pseUdo-potential treat
ment is no longer valid. When iron atoms are brought 
together to form a metal, the atomic 3d levels are not 
completely destroyed but become virtual or resonant 
levels of the ionic potential (ZIMAN, 1971). This means 
that conduction electrons near the Fermi energy in iron 
are very strongly scattered by this potential. The energy 
at which the electron-ion scattering cross section is a 
maximum corresponds to the middle of the d band in 
metallic iron. 

We calculate the resistivity of liquid iron at atmos
pheric pressure and close to its melting point and then 
evaluate the resistivity as a function of density with the 
aim of estimating the electrical conductivity (J of the 
Earth 's outer core. The latter quantity is an important 
parameter in the dynamo model for the geomagnetic 
field. Several empirical values for (J have been propos
ed, most of them based on dubious extrapolations of 
known experimental data of one kind or another. We 
compare our calculated value of (J with some recent 
high-pressure shock-wave data and discuss effects of 
alloying iron with nickel and silicon. 
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A prehminary account of the iron calculation was 
given by JAIN and EVANS (1972). 

2. Outline of the theory 

A derivation of the present model has been given by 
EVANS et af. (1971) and DREIRACH et af. (1972). The 
resistivity p can be written as: 

3nQ Il 
p = ~ 4(q/2KF)3 a(q) It(q /2KF)1 2 

d(q /2KF) ' 
e hVF 0 

(1) 

where Qo is the atomic volume of the liquid, VF is the 
velocity of an electron at the Fermi energy, e is the 
electronic charge and q is a measure of the scattering 
angle for an electron on the Fermi sphere of radius K F • 

The factor (q/2KF)3 arises from the usual momentum 
transfer factor 1 - cos 0 in the Boltzmann equation re
sult for the relaxation time. The distribution of the 
scatterers enters through a(q), the liquid structure fac
tor or interference function, 

a(q) = N - 1 
1 L exp (iq . RJ 1

2
, (2) 

i 

where N is the number of ions and the average is over 
all ion sites Ri in the liquid . This quantity can be 
measured directly in neutron or X-ray scattering ex
periments. 

The scattering properties of a single site are intro
duced through the transition matrix t(K, K') which gives 
the probability of an electron in a plane wave state 
IK) being scattered into another state IK' ) of the 
same energy by a single scattering event. If the poten
tial at any scattering centre is spherically symmetrical, 
then we can write 

-2rth3 

t(K K') = x 
, Qom (2mE)t 

I (2l + 1) sin I1tCE) exp Cii'/tCE» PI (cos 0), (3) 
I 

where 1'/ I are the angular momentum phase shifts of this 
potential. Now t has the dimensions of energy and is 
normalised to the atomic volume, q = I K - K' I, and 
o is the angle between K and K'. Plcos 0) is the usual 
Legendre polynominal. The phase shifts are evaluated 
at the Fermi energy E = EF measured relative to the 
zero of energy EMTZ in the liquid metal ; m is the elec
tron mass. 

In transition metals, the d phase shift 1'/2 increases ' 

rapidly with energy and passes through !n at a "reso
nance" energy Er• It is clear from eq. (3) that at this 
energy the scattering cross section Itl 2 is a maximum. 
In order to indicate how the resistivity depends on the 
form of the d phase shift we write: 

f12(EF) = arctan (_r_) , (4) 
Er-EF 

where r is the half-width of the resonance. This ap
proximation for 112 is good provided the Fermi energy 
EF is close to E r • If the sand p phase shifts are small, 
then only the d contribution is important in eq. (3). 
The integral in eq. (1) can then be evaluated (approxi
mately) because the integral is heavily weighted to
wards backward scattering, i.e. q ~ 2KF, and the re
sistivity has the form 

30n3 h3 a(2KF) ]'2 
p ~ - 2---2- 2 2' (5) 

me Qo KF EF(r +(Er-EF) ) 

The resistivity depends strongly on the width of the 
resonance, the position of the Fermi energy relative to 
the resonance energy and the radius KF of the Fermi 
sphere. We have taken the Fermi velocity VF equal to 
hKF/m, the usual free-electron approximation. To make 
first-princi pIes calculations of the resistivity, one needs 
the appropriate electron-ion potential, the Fermi ener
gy in the metal, information about the liquid structure 
factor and a prescription for evaluating the Fermi 
radius K F • 

Although there are many approximations and as
sumptions inherent in this simple theory (see DREI

RACH et al., 1972), it does appear to give a good under
standing of the electrical resistivity in liquid noble 
metals, iron, nickel and many alloys. 

3. Details of the calculations 

In order to evaluate the phase shifts which go into 
eq. (3) for the scattering amplitude, we need a method 
for constructing the electron-ion potential in a liquid 
metal. The method adopted in the present work was 
the so called "muffin-tin" model which is usually em
ployed in energy band structure calculations in solids. 
A "muffin-tin" potential is one in which the potential 
is taken to be spherically symmetrical within a sphere 
of radius RMT centred around a given atom (in the solid 
or liquid). Outside of this radius RMT, the potential is 
set equal to a constant, EMTZ• The radius RMT is usually 
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taken to be half the nearest-neighbour distance. EMTZ 

is taken as the effective energy zero in the metal. 
The actual construction of a muffin-tin potential is 

based on the MATTHEISS (1964) prescription of over
lapping Hartree-Fock- Slater neutral atom charge den
sities. The total charge density fer) can be written as: 

fer) = fo(r) + I f(r-R j), (6) 
j * 0 

where R j is the position of an atom neighbouring the 
central atom i = O. For liquid iron we assumed that 
the atoms were arranged in the bcc structure with a 
lattice parameter a corresponding to the density of the 
liquid, i.e. 

Qo = ta3
, 

RMT = (lJ 3)a. 
(7) 

The coordination number of normal liquid iron near 
its melting point is ~9 (WASEDA and SUZUKI, 1970; 
RUPPERSBERG and SEEMAN, 1966), which is not very 
different from the corresponding value of 8 for the bcc 
lattice. The total charge density should not be very 
sensitive to small changes in the coordination number 
or indeed to changes in the positions of atoms further 
away than the nearest neighbours. The electron- ion 
potential is obtained by solving the appropriate Pois
son equation . Some average of the electron exchange 
interaction has to be included, and this has been done 
using a form of the Slater free-electron approximation; 
for details see DRELRACH el al. (1972) and the references 
therein . 

The Fermi energy EF can be calculated at each den
sity using the method given by DREIRACH (1971). We 
write 

(8) 

where Eb is the energy of the bottom of the conduction 
band, m* is a conslant effective mass which is independ
ent of density. KF is the Fermi radius given by the 
familiar free-electron result, 

(9) 

Here Z is the number of "valence" electrons which we 
have taken to be constant and equal to one for iron. 
A discussion of the physics behind this choice is given 
by DREIRACH et al. (1972) . Eq. (8) assumes that the 
width of the conduction band, EF-Eb , scales with 

density Q;; 1. like a simple parabolic band. The energy 
of the bottom of the band can be calculated from a 
knowledge of the s phase shifts of the corresponding 
muffin-tin potential, while the effective mass m* was 
evaluated from band structure data on solid iron 
(WOOD, 1962). 

We calculated muffin-tin potentials at several densi
ties using the method outlined above. The phase shifts 
111 were calculated for several energies by numerically 
integrating the radial Schrodinger equation inside the 
muffin-tin sphere. In table I, we list the calculated val-

TABLE 1 

Parameters entering the evalua tion of the scattering cross-section 
at different densities. Here Q /Q o is the ratio of atomic volumes, 
with Q o the atomic volume of normal liquid iron. The muffin-tin 
zero EMTZ is measured with respect to atomic zero. The ener-

gies E b , E, and EF are measured with respect to EMTZ 

Density QfQo EMTZ Eb E, EF r 
(g/cm 3

) (Ry) (Ry) (Ry) (Ry) (Ry) 

6.86 I - 1.420 0.060 0.527 0.632 0.070 
7.92 0.866 - 1.626 0. 141 0.66 0.77 0.110 
8.82 0.778 - 1.794 0.220 0.77 0.896 0.150 
9.00 0.763 - 1.828 0.237 0.79 0.922 0. 155 
9.40 0.730 - 1.903 0.276 0.838 0.98 0. 180 

ues of some relevant parameters which determine the 
scattering cross section for the conduction electrons. 
Although we do not use the "resonance" formulae (4) 
and (5) in the actual calculation of the resistivity, it is 
instructive to look at bow the position and width of the 
d resonance changes with the variation of density be
cause these have major influence on the resistivity. As 
the density increases, the muffin-tin zero EMTZ gets 
progressively lower, and this is simply due to the in
creasing overlap of the neighbouring atomic charge 
densities or potentials. The energy of the bottom of the 
band Eb a nd the resonance energy Er both increase on 
decreasing the atomic volume. The width r of the 
resonance is a strong function of density and increases 
rapidly with increasing density. This in turn implies 
that the d band in the corresponding metal will broaden 

with an increase in density . 
To calculate the resistivity, we need to ' know the 

liqu id structure factor a(q) at each density. There is 
little experimental information about this, but it is pos
sible, however, to make reasonable estimates of the 
behaviour of a(q) using the hard-sphere model (ASH
CROFT and LEKNER, 1966). In this model, the structure 
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factor has a simple analytic form which depends on 
only two parameters, the packing fract10n p and the 
hard sphere diameter R. These parameters are related 
to each other as 

3 6Qop 
R = - -

1t 
(10) 

For most liquid metals under normal pressure and at 
temperatures near the melting point, a good approxima
tion to the experimental structure factor can be obtain
ed using a value of p equal to 0.45. The same choice 
for iron reproduces the observed a(q) of WASEDA and 
SUZUKI (1970) quite closely. 

We estimated the variation of a(q) with density by 
making use of the thermodynamic relation (A~HCROIT 
and LEKNER, 1966) 

(1- pt KBTP 
a(O) = (1+2p)4 =~' (11) 

where KB is Boltzmann's constant, T is the absolute 
temperature and P is the isothermal compressibility. 

If we want to calculate the electrical resistivity of 
iron in the Earth's core, we must take into account the 
variation of both the temperature and the density, i.e. , 
we should know the relevant equation of state. Given 
such information, we can .calculate the compressibility 
P, solve for p in eq. (11) and hence construct the ap
propriate stucture factor. 

HIGGINS and KENNEDY (1971) have recently attempt
ed to analyse the te:nwerature, pressure and density 
distributions in the Earth 's core. They find that the 
pressure-temperature conditions approximate the melt
ing curve for iron. We have used their data to calculate 
the packing fraction for several densities. 

4. Results for the resistivity of liquid iron 

The resistivity was calculated by performing the in
tegral in eq. (I) and using the full t matrix of eq. (3). 
For pure iron at 1620 °C, we obtained a value of 
172 IlQ . cm for the resistivity, which is in reasonable 
agreement with the experimental value of 139 IlQ . cm. 
This calculation employed the experimental structure 
factor of W ASEDA and SUZUKI (I 970). The r.esults for 
the resistivity at different densities and temperatures, 
calculated using the procedure for the structure factor 
outlined above, are listed in table 2. We predict a 
decrease in resistivity as the pressure and temperature 

increa~e. The trends in these results are in qualitative 
agreement with those of KEELER and ROYCE (1971), 
who carried out shock wave experiments on the re
sistivity of solid iron. 

TABLE 2 

Calculated values of the resistivity of pure iron for various points 
on the melting point curve 

D«nsity Temperature Pressure Resistivity 
(g/cm3

) COC) (Mbar) llQ· cm 

8.0 2400 0.15 138 
8.5 2800 0.25 134 
9.0 3000 0.46 124 
9.5 3300 0.69 98 

10.0 3400 0.77 63 

KEELER and ROYCE (1971) have also measured the 
electrical· conductivity of pure iron at pressures of 
~ 1 Mbar and at temperatures above 3000 °C. They 
give a value for the resistivity of iron of about 
57 JlQ . cm at 1.4 Mbar, this pressure corresponding to 
that at the core-mantle interface. Since our calculations 
are based on the HIGGINS and KENNEDY (1971) tem
perature- density relation for the melting curve of iron, 
our results should not be compared directly with these 
high-temperature shock-wave data of KEELER and 
ROYCE (1971). Nevertheless, if we take the density of 
iron at the interface to be 10 g/cm3 (as quoted by 
KEELER and ROYCE, 1971), then according to the melt
ing curve given by HIGGINS and KENNEDY (1971) the 
corresponding pressure and temperature would be 
about 0.77 Mbar and 3400 °C, respectively. Our cal
culated value of the resistivity under these conditions 
is 63 IlQ . em which is close to the shock-wave result, 
although the latter corresponds to a pressure of 
1.4 Mbar and a temperature of 3500 °C. 

5. Discussion 

The magneto hydrodynamic theories of the origin of 
the geomagnetic field require that the magnetic Rey
nold number should be much larger than unity. The 
accepted figure is about 100, and this imposes a lower 
limit on the magnitude of the electrical conductivity of 
the outer liquid core. This limit is about 3 x 103Q - l . 

cm - 1 (e.g., KEELER and ROYCE, 1971, and references 
therein). In other words, the resistivity should be less 
than about 330 J.1U . cm. Clearly our calculated figure 
easily satisfies this requirement. Even allowing for in-

-- - ---- --------
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accuracies of, say, about ± 10 % in the values of com
pressibility which determine the structure factors, this 

will alter the resistivities by about ± 7 %. We have sim

plified our calculations by taking the valence Z to be 

a constant independent of density or temperature. If 
we allow for increases in the Fermi radius due to possi

ble variation of Z, then the resistivity is only likely to 

increase by a factor of two at most. 
The Earth's outer core almost certainly contains 

lighter elements in solution with iron . It has long been 

suggested that these elements m ight be nickel or silicon. 

Recently, BUSCH et al. (1971) have measured the re

sistivity of some liquid transition metals at normal 

pressures. They find that aUoying iron with germanium 

increases the resistivity of pure iron (139 (lO . cm) to 

maximum of 186 (lO . cm at about 35 at. % of germa

nium. Silicon is expected to behave in much the same 

way as germanium . When gold is alloyed with liquid 

iron, the resistivity is increased by a few % and nickel 

should be similar in this respect. 

Our simple model has been applied to various alloys 

of liquid noble and transition metals (DREIRACH et al. 
1972) and can explain many features of the alloying 

behaviour. The model predicts that the alloying depend

ence of the resistivity is much the same for the liquids 

at high pressures as at normal pressures. We do not 

expect very large changes in the resistivity of iron in 

the outer core due to the presence of nickel or silicon 

in solution. This is contrary to STACEY'S (1967) esti

mates, but it is in accordance with GARDINER and 

STACEY (1971). The experiments of KEELER and ROYCE 

(1971) at 1.4 Mb give results for the resistivity of 
Fe- 20 % Ni and of Fe- 20 % Si as 94 flO' cm and 
182 (lO' cm, respectively. Unfortunately, it is not 

known whether these alloys are solid or liquid . We are 

unable to make accurate estimates of the effect of 
sulphur on the resistivity of an iron core, but we would 
not expect any drastic increase to occur, i.e., the re

sistivity should not be greater than the lower limit of 

330 (lO . cm. 

At this conference, RUNCORN (1972) has suggested 

the possibility of a dynamo model for the magnetic 

field of the Moon. If one assumes a liquid iron core for 

the Moon in its earlier history, then one can probably 

estimate the electrical conductivity of such a core from 

table 2 by assuming some values for the relevant density 

and temperature. 
In conclusion, we would Like to point out that our 

model can be applied to most liquid metals at normal 

or high pressures, and we feel that it might be especially 

useful in interpreting static high-pressure conductivity 

data . 
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